Journal Title:Evolving Systems
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.
Evolving Systems 涵盖动态演化系统领域的调查、方法论和面向应用的论文。 ‘不断发展的系统’受到动态变化和演化环境中系统模型演化思想的启发。与机器学习、数学建模和相关学科的标准方法相比,其中模型结构是先验假设和固定的,问题集中在参数优化上,进化系统允许模型结构逐渐改变/进化。这种持续或终身学习和领域适应的目的是自组织。它可以适应新的数据模式,更适合流数据、迁移学习,并且可以识别和学习未知和不可预测的数据模式。这些属性对于在设计后(在运行时)继续学习和适应的自主机器人系统至关重要。
Evolving Systems 征集解决非平稳、不可预测环境中系统建模、聚类、分类、预测和控制各个方面问题的出版物,并描述其设计的新方法和方法。
该期刊致力于全面讨论自我开发、自我组织和进化的系统这一主题。从系统方法到案例研究和实际工业应用。它涵盖了方法的所有方面,例如
进化系统方法论
不断发展的神经网络和神经模糊系统
不断发展的分类器和聚类
不断发展的控制器和预测模型
不断发展的可解释人工智能系统
不断发展的系统应用程序
同时也关注新的范例和应用,包括医学、机器人技术、商业、工业自动化、控制系统、运输、通信、环境监测、生物医学系统、安全和电子服务、金融和经济学。所有提交的方法和系统的共同特征是系统和环境的不断发展。
该期刊包含与以下相关的贡献:
1) 机器学习、人工智能、计算智能和数学建模的方法
2) 灵感来自自然和生物学,包括神经科学、生物信息学和分子生物学、量子物理学
3) 在工程、商业、社会科学中的应用。
大类学科 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
Q3 | Q3 | 4区 |
大类学科 | 小类学科 | 分区 |
Q3 | Q3 | 4区 |
期刊名称 | 领域 | 中科院分区 | 影响因子 |
International Journal Of Wavelets Multiresolution And Information Processing | 计算机科学 | 4区 | 1.400 |
Archives Of Control Sciences | 计算机科学 | 4区 | 1.200 |
International Journal Of Unconventional Computing | 计算机科学 | 4区 | 1.700 |
Ieee Pervasive Computing | 计算机科学 | 4区 | 1.600 |
Rairo-theoretical Informatics And Applications | 计算机科学 | 4区 | 0.600 |
Ieee Consumer Electronics Magazine | 计算机科学 | 4区 | 4.500 |