Journal Title:Fractals-complex Geometry Patterns And Scaling In Nature And Society
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
在过去的几十年中,对涉及复杂几何、图案和比例的现象的研究经历了惊人的发展和应用。在这段相对较短的时间内,几何和/或时间尺度已被证明代表了许多过程的共同方面,这些过程发生在异常多样化的领域,包括物理学、数学、生物学、化学、经济学、工程和技术以及人类行为。通常,现象的复杂性体现在潜在的复杂几何中,在大多数情况下,可以用非整数(分形)维数的对象来描述。在其他情况下,事件的时间分布或各种其他量显示特定的缩放行为,从而更好地理解决定给定过程的相关因素。
在相关的理论、数值和实验研究中使用分形几何和标度作为一种语言,可以更深入地了解以前难以解决的问题。其中,通过应用尺度不变性、自亲和性和多重分形等概念,可以更好地理解生长现象、湍流、迭代函数、胶体聚集、生物模式形成、股票市场和非均匀材料。
专门研究上述现象的期刊的主要挑战在于其跨学科性质;我们的承诺是汇集这些领域的最新发展,以便就自然和社会中复杂的空间和时间行为的各种方法和科学观点进行富有成效的互动。
大类学科 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
数学 | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用 MULTIDISCIPLINARY SCIENCES 综合性期刊 | 2区 | 是 | 是 |
大类学科 | 小类学科 | 分区 |
数学 | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用 MULTIDISCIPLINARY SCIENCES 综合性期刊 | 2区 |
期刊名称 | 领域 | 中科院分区 | 影响因子 |
Publicacions Matematiques | 数学 | 2区 | 1.100 |
Calculus Of Variations And Partial Differential Equations | 数学 | 2区 | 2.100 |
Review Of Symbolic Logic | 数学 | 2区 | 0.600 |
Review Of Symbolic Logic | 数学 | 2区 | 0.600 |
Siam Journal On Matrix Analysis And Applications | 数学 | 2区 | 1.500 |
Siam Journal On Matrix Analysis And Applications | 数学 | 2区 | 1.500 |