Journal Title:Journal Of Knot Theory And Its Ramifications
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).
Papers that will be published include:
-new research in the theory of knots and links, and their applications;
-new research in related fields;
-tutorial and review papers.
With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.
本期刊旨在作为纽结理论新发展的论坛,特别是在纽结理论与数学和自然科学的其他方面建立联系的发展。由于学科的性质,我们的立场是跨学科的。作为一门核心数学学科的结理论受到多种形式的概括(虚拟结和链接、高维结、其他流形中的结和链接、非球形结、类似于打结的递归系统)。结存在于更广泛的数学框架中(三维和更高维流形的分类、统计力学和量子理论、量子群、高斯码组合、组合、算法和计算复杂性、拓扑和代数结构的范畴论和分类、代数拓扑、拓扑量子场论)。
将发表的论文包括:
-纽结理论及其应用的新研究;
-相关领域的新研究;
-教程和评论论文。
通过这本期刊,我们希望为结理论和拓扑相关领域的研究人员、在工作中使用结理论的研究人员以及有兴趣了解当前结理论及其后果的科学家提供服务。
大类学科 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
数学 | MATHEMATICS 数学 | 4区 | 是 | 是 |
大类学科 | 小类学科 | 分区 |
数学 | MATHEMATICS 数学 | 4区 |
期刊名称 | 领域 | 中科院分区 | 影响因子 |
Sequential Analysis-design Methods And Applications | 数学 | 4区 | 0.800 |
Russian Journal Of Numerical Analysis And Mathematical Modelling | 数学 | 4区 | 0.600 |
Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg | 数学 | 4区 | 0.400 |
Funkcialaj Ekvacioj-serio Internacia | 数学 | 4区 | 0.300 |
Electronic Transactions On Numerical Analysis | 数学 | 4区 | 1.300 |
Mathematical Methods Of Operations Research | 数学 | 4区 | 1.200 |